Aug. 2025: "40 years of ECC"

Modern Applications of Pairings

Dan Boneh

Stanford University

In the beginning ...

There was the projective line:

 \mathbb{F}_p^*

(dim 0)

Lots of amazing applications:

Diffie-Hellman key exch., pub-key encryption, digital signatures

... and all was good

But the DLOG in \mathbb{F}_p^* is only sub-exp hard: $\exp(\approx \log^{1/3}(p))$

Then came the elliptic curve ...

$$E_{a,b}/\mathbb{F}_p := \{ (x,y) \in \mathbb{F}_p^2 : y^2 = x^3 + ax + b \}$$
 $4a^2 + 27b^2 \neq 0$

Finite abelian group of order $\approx p$

- \Rightarrow Same apps, but the DLOG is much harder: $\exp(\log(p/2))$
- ⇒ Scales better to higher security

we hope ...

- H. Poincaré, 1901
- "Diophantus and Diophantine Equations," Bashmakova, 1997

A magical new structure on EC

$$\mathbb{G}_1$$
, \mathbb{G}_2 , \mathbb{G}_T : finite groups of prime order p

<u>Def</u>: A <u>pairing</u> $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a map s.t.:

- Bilinear: $e(aG_1,bG_2)=e(G_1,G_2)^{ab} \quad \forall a,b\in\mathbb{Z}, G_1\in\mathbb{G}_1,G_2\in\mathbb{G}_2$
- Poly-time computable and non-degenerate: G_1, G_2 generate $\mathbb{G}_1, \mathbb{G}_2$ resp. $\Rightarrow e(G_1, G_2)$ generates \mathbb{G}_T

Good examples:
$$\mathbb{G}_1 \subseteq E(\mathbb{F}_p)$$
, $\mathbb{G}_2 \subseteq E(\mathbb{F}_{p^{\alpha}})$, $\mathbb{G}_T \subseteq \mathbb{F}_{p^{\alpha}}^*$

Alin Tomescu: the history of Weil's pairing.

A magical new structure on EC

 \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T : finite groups of prime order p

<u>Def</u>: A <u>pairing</u> $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a map s.t.:

- Bilinear: $e(aG_1,bG_2)=e(G_1,G_2)^{ab} \quad \forall a,b\in\mathbb{Z}, G_1\in\mathbb{G}_1,G_2\in\mathbb{G}_2$
- Poly-time computable and non-degenerate: G_1, G_2 generate $\mathbb{G}_1, \mathbb{G}_2$ resp. $\Rightarrow e(G_1, G_2)$ generates \mathbb{G}_T

Good examples: $\mathbb{G}_1 \subseteq E(\mathbb{F}_p)$, $\mathbb{G}_2 \subseteq E(\mathbb{F}_{p^{\alpha}})$, $\mathbb{G}_T \subseteq \mathbb{F}_{p^{\alpha}}^*$

Computing the pairing: using Miller's alg. [M'86, M'04]

BLS: a sig scheme from pairings

$$e \colon \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T, \ |\mathbb{G}_1| = |\mathbb{G}_2| = p, \ G_b \in \mathbb{G}_b \text{ gens., } h \colon M \to \mathbb{G}_2$$

$$\text{Gen: } sk \leftarrow \mathbb{Z}_p \quad , \quad pk := sk \cdot G_1 \in \mathbb{G}_1$$

$$S(sk, m)$$
: output $\sigma := sk \cdot h(m) \in \mathbb{G}_2$

$$V(pk, m, \sigma)$$
: accept if $e(G_1, \sigma) \stackrel{?}{=} e(pk, h(m))$

<u>Thm</u>: co-CDH in $\mathbb{G}_1 \times \mathbb{G}_2$ hard \Rightarrow existentially unforgeable (RO model)

co-CDH:
$$aG_1$$
, aG_2 , $bG_2 \rightarrow abG_2$

A new property: sig. aggregation [BGLS'03,Bol'03]

Anyone can compress n signatures into one

```
V_{agg}(\overline{\mathbf{pk}}, \overline{\mathbf{m}}, \sigma^*) = \text{``accept''}
convinces verifier that
     for i = 1, ..., n: user i signed msg m_i
```

Lots to say about how to aggregate securely:

see [BDN'18] or Boneh-Shoup book cryptobook.us eprint/2018/483

Pairing-based sigs. without hashing? [BB'04]

Gen:
$$sk = (\alpha, \beta \leftarrow \mathbb{Z}_p)$$
, $pk = (Y = \alpha G_2, Z = \beta G_2) \in \mathbb{G}_2^2$

$$\mathsf{S}(sk,m\in\mathbb{Z}_p)\colon \ r\leftarrow\mathbb{Z}_p,\ \ \sigma=\left(\frac{1}{\alpha+r\beta+m}\right)G_1\in\mathbb{G}_1\ ,\ \ \text{output}\ (r,\sigma)$$

$$\qquad \qquad m \text{ is not hashed!}$$

$$V(pk, m, (r, \sigma))$$
: accept if $e(\sigma, Y + rZ + mG_2) \stackrel{?}{=} e(G_1, G_2)$

Thm: secure (EUF-CMA) assuming q_S -BDH is hard in $\mathbb{G}_1 \times \mathbb{G}_2$.

$$q ext{-BDH:} \ \underbrace{\alpha G_1,\ \alpha^2 G_1,\ \dots,\ \alpha^q G_1}_{\text{in }\mathbb{G}_1}, \ \underbrace{\alpha G_2,\ H,\ \alpha^{q+2}H}_{\text{in }\mathbb{G}_2} \ \stackrel{\bullet}{\Longrightarrow} \ e(G_1,H)^{(\alpha^{q+1})}$$

Pairing-based sigs. without hashing? [BB'04]

only used in the security proof

a tower of powers

 $\alpha G_1, \ \alpha^2 G_1, \ \ldots, \ \alpha^q G_1$ *q*-BDH:

(need to account for Brown-Gallant-Cheon algorithm)

The proof strategy

Let A be a sig. forger. We build an algorithm B for q_S -BDH alg.

What if tower of powers is part of scheme?

A new primitive: **functional commitments** [LRY'16]

- An interesting primitive in its own right
- Used for building succinct proof systems

Fix a function family
$$\mathcal{F} = \{f: X \to Y\}$$

Setup $(1^{\lambda}, \mathcal{F}) \to (pp, vp)$
Commit $(pp, f \in \mathcal{F}) \to \text{com}$

Eval
$$(pp, f, x) \rightarrow (f(x), \pi)$$
 Verify $(vp, com, x, y, \pi) \rightarrow 0/1$

Security: function binding

The committer can only "open" a commitment in a way that is consistent with some $f \in \mathcal{F}$

<u>Def</u>: the commitment scheme is **function binding** if \forall PPT \mathcal{A} :

$$\Pr\left[\begin{array}{l} \forall i \in [n] : \operatorname{Verify}(vp, \operatorname{com}, x_i, y_i, \pi_i) = 1, \\ \operatorname{but} \not\exists f \in \mathcal{F} \text{ s.t. } \forall i \in [n] : f(x_i) = y_i \end{array}\right] : \begin{array}{l} (pp, vp) \leftarrow \operatorname{Setup}(1^{\lambda}, \mathcal{F}) \\ (\operatorname{com}, (x_i, y_i, \pi_i)_{i=1}^n) \leftarrow \operatorname{A}(pp) \end{array}\right]$$

is negligible.

Committing to a polynomial in $\mathbb{F}_p^{< d}[X]$ [KZG'10]

Goal: commitment scheme for $\mathcal{F} = \{ f \in \mathbb{F}_p[X], \deg(f) < d \}$

<u>Lemma</u>: Let $f \in \mathbb{F}_p[X]$. Then

$$f(u) = v$$
 iff $q(X) := \frac{f(X) - v}{X - u} \in \mathbb{F}_p[X]$

i.e. f(X) - v is in the ideal (X - u)

Committing to a polynomial in $\mathbb{F}_p^{< d}[X]$ [KZG'10]

Goal: commitment scheme for $\mathcal{F} = \{ f \in \mathbb{F}_n[X], \deg(f) < d \}$

Lemma: Let $f \in \mathbb{F}_p[X]$. Then

 $f(u) = v \quad \text{iff} \quad q(X) \coloneqq \frac{f(X) - v}{v - u} \in \mathbb{F}_p[X]$

X-u = p[-1]

Setup $(1^{\lambda}, d)$: $\alpha \leftarrow \mathbb{Z}_p$, $pp = (\alpha G_1, \alpha^2 G_1, \dots, \alpha^{d-1} G_1)$, $vp = \alpha G_2$

Commit $(pp, f = \sum_{i=0}^{d-1} c_i X^i) \to f(\alpha) \cdot G_1 = \sum_{i=0}^{d-1} c_i \cdot \alpha^i G_1 \in \mathbb{G}_1$

Eval $(pp, f, u) \rightarrow (v = f(u), \pi = q(\alpha) \cdot G_1)$

Why is this secure?

Verify π : use pairing to check that $q(\alpha) \cdot (\alpha - u) = f(\alpha) - v$

Verify(vp, com, u, v, π): $e(\pi, \alpha G_2 - uG_2) \stackrel{?}{=} e(com - vG_1, G_2)$

Thm: This scheme is function binding for $\mathbb{F}_p^{< d}[X]$ if q_d -BDH is hard in $\mathbb{G}_1 \times \mathbb{G}_2$, in the AGM

(or under ARSDH assumption w/o AGM [LPS'24,CGKY'25])

- Dory [$\underline{L'20}$]: no secrets in pp, vp, but proof size is $O(\log d)$
- KZG generalizes to $\mathbb{F}_p^{\leq 1}[X_1,\ldots,X_k]$, but proof π is k group elements.

... see Mercury [EG'25] for a <u>fast</u> <u>constant-size</u> proof.

Applications of univariate poly-commit

Example 1: to commit to a set
$$S = \{u_1, ..., u_n\} \subseteq \mathbb{F}_p$$

commit to polynomial $f(X) \coloneqq (X - u_1) \cdots (X - u_n) \in \mathbb{F}_p[X]$
Later: prove $u \in S$ by proving that $f(u) = 0$

Example 2: to commit to a vector
$$v = (v_1, ..., v_n) \in \mathbb{F}_p^n$$
 commit to a polynomial $g \in \mathbb{F}_p[X]$ s.t. $g(i) = v_i$, $i \in [n]$ Later: prove $v[i] = v_i$ by proving $g(i) = v_i$

Batch open: open many committed poly. at t points using a single proof

Verkle trees and more ...

Many more applications to univariate and multilinear polynomial commitment schemes

Most succinct constructions use pairings

... and all was good

Then came the quantum computer

National Security Memorandum 10 (NSM-10) establishes the year 2035 as the primary target for completing the migration to PQC across Federal systems [NSM10]:

"Any digital system that uses existing public standards for public-key cryptography, or that is planning to transition to such cryptography, could be vulnerable to an attack by a Cryptographically Relevant Quantum Computer (CRQC). To mitigate this risk, the United States must prioritize the timely and equitable transition of cryptographic systems to quantum-resistant cryptography, with the goal of mitigating as much of the quantum risk as is feasible by 2035."

Open: is there a post-quantum BLS? (aggregation, threshold, DKG) post-quantum KZG? (short proofs)

Finally: why stop at pairings?

An important open problem: **multilinear maps** [BS'02]

Find a mapping $e: G_1 \times \cdots \times G_n \rightarrow G_T$ s.t.

- e is a non-degenerate n-linear map,
- e is computable in poly-time, and
- DLOG in G_1, \dots, G_n, G_T is hard.

Open for $n \geq 3$. Powerful applications in cryptography.

THE END