
2025–40 years of ECC
Implementations, impact, and extensions

Kristin Lauter
Meta AI Research
August 11, 2025

Commercial deployment at Microsoft

ECC at Microsoft Research (1999-2005)
Peter Montgomery:

● Bignum library (multi-precision arithmetic library)
● Montgomery curves, y^2 = x^3 + a*x^2 + x

○ e.g. ECC25519 over Fp, p = 2^{255} - 19, pseudo-Mersenne, introduced by Dan Bernstein (2005)
○ Widely deployed in many libraries and protocols, using Montgomery ladder

● Montgomery multiplication

Coordinate systems: affine vs. (weighted) projective

● For pseudo Mersenne primes, reported ratio of the cost of inversion to multiplication modulo p: 80-to-1
● For random primes, with Peter’s fast inversion techniques, ratio was ~ 5-to-1
● Simultaneous inversion trick
● → implementation of ECC and pairing-based crypto with affine coordinates → numerous improvements

○ An Efficient Procedure to Double and Add Points on an Elliptic Curve, Eisentraeger-Lauter-Montgomery (2002/112)
○ Fast Elliptic Curve Arithmetic and Improved Weil Pairing Evaluation, Eisentraeger-Lauter-Montgomery (2003/242)
○ Trading Inversions for Multiplications in Elliptic Curve Cryptography, Ciet-Joye-Lauter-Montgomery (2003/257)
○ An Analysis of Affine Coordinates for Pairing Computation, Lauter-Montgomery-Naehrig (2010/363)

https://learn.microsoft.com/en-us/windows/win32/seccng/
cryptographic-primitives?source=recommendations

ECC in Windows Vista CNG (2005)

NSA Suite B Crypto, Feb 2005

2005: Windows Vista Elliptic Curve Cryptography CNG

AI Overview: Microsoft Windows Vista introduced the Cryptography API: Next Generation (CNG), which includes
support for Elliptic Curve Cryptography (ECC). CNG provides a unified set of APIs for both user and kernel mode
cryptography, enabling the use of ECC and other modern cryptographic algorithms in various applications,
including SSL/TLS and IPsec.

Key points about ECC and CNG in Windows Vista:

 CNG's Role: CNG was designed as a replacement for the older Cryptographic API (CAPI) offering greater flexibility and
support for new algorithms like ECC.

 ECC Implementation: CNG provides implementations of ECC algorithms within its key storage and retrieval functions,
specifically within the NCrypt subset.

In simpler terms: Windows Vista's CNG API made it easier to use modern cryptography, including ECC, in various
applications, including those requiring kernel-level security features like SSL/TLS and IPsec. It also improved
smart card support and provided a more flexible and extensible framework for cryptography in Windows.

https://www.google.com/search?cs=0&sca_esv=34471c9f7ec99a4b&q=Cryptography+API%3A+Next+Generation+%28CNG%29&sa=X&ved=2ahUKEwiR4ePHufCOAxUfETQIHdE5J-4QxccNegQIAhAB&mstk=AUtExfABjZdjxNS5VQEIYi59SaT5HR6YcxCofEVk-3K7M4M7AO7A1f9jnWuzrqbtcVTxq6zzL4WFFy5jVqGtvCcnDwZODBr14wmRWhvN8Ym45SgV4t_Mi3lqvYB3HYCxZjG5iYkp5fAHtLJAeLZPyw10lbV4NsokPCcaovm6iGfYaFIRKh8cBpLLuSFbO6h2ai5ZFOp3&csui=3
https://www.google.com/search?cs=0&sca_esv=34471c9f7ec99a4b&q=Elliptic+Curve+Cryptography+%28ECC%29&sa=X&ved=2ahUKEwiR4ePHufCOAxUfETQIHdE5J-4QxccNegQIAhAC&mstk=AUtExfABjZdjxNS5VQEIYi59SaT5HR6YcxCofEVk-3K7M4M7AO7A1f9jnWuzrqbtcVTxq6zzL4WFFy5jVqGtvCcnDwZODBr14wmRWhvN8Ym45SgV4t_Mi3lqvYB3HYCxZjG5iYkp5fAHtLJAeLZPyw10lbV4NsokPCcaovm6iGfYaFIRKh8cBpLLuSFbO6h2ai5ZFOp3&csui=3
https://www.google.com/search?cs=0&sca_esv=34471c9f7ec99a4b&q=NCrypt&sa=X&ved=2ahUKEwiR4ePHufCOAxUfETQIHdE5J-4QxccNegQIJBAB&mstk=AUtExfABjZdjxNS5VQEIYi59SaT5HR6YcxCofEVk-3K7M4M7AO7A1f9jnWuzrqbtcVTxq6zzL4WFFy5jVqGtvCcnDwZODBr14wmRWhvN8Ym45SgV4t_Mi3lqvYB3HYCxZjG5iYkp5fAHtLJAeLZPyw10lbV4NsokPCcaovm6iGfYaFIRKh8cBpLLuSFbO6h2ai5ZFOp3&csui=3

Windows CE deployment–OS for embedded devices

AI Overview: Windows CE supports ECC through the .NET Compact Framework and third-party libraries or
custom implementations. Developers can leverage these options to integrate ECC for secure communication
and data protection within their Windows CE applications.

Popular Frameworks and Tools for ECC-256

● Bouncy Castle: cryptography library for .NET that supports ECC
● Microsoft .NET Framework: Provides built-in support for ECC through classes in the

System.Security.Cryptography namespace.
● OpenSSL: OpenSSL can be integrated with C# applications for ECC operations. X25519 is an elliptic

curve Diffie-Hellman key exchange using Curve25519, which was added to openssl 1.1.0 , and Red Hat Enterprise
Linux 8 supports up to openssl-1.1.1 . (Red Hat Customer Portal)

Pairing-based Applications

Signatures for Network Coding
Uses ECC-based BLS signatures to prevent pollution attacks in content distributions networks like BitTorrent

Signatures for Network Coding, Charles-Jain-Lauter, Proceedings of fortieth annual Conference on Information Sciences and Systems, 2006

An Anonymous Health Care System

Groth-Sahai Noninteractive zero-knowledge proof systems (NIZK) uses pairing-based elliptic curve

cryptography to enable for example, Delegatable Anonymous Credentials,
Eprint 2008/428 Belenkiy-Camenisch-Chase-Kohlweiss-Lysyanskaya-Shacham

Can be applied to enable insurance billing system which does not require the patient to share their

medical record and procedures with the insurance company!

An Anonymous Health Care System, Melissa Chase, Kristin Lauter

USENIX 2010 HealthSec Workshop, IACR Cryptology ePrint Archive | January 2011 , Vol 16

Elliptic Curves in Post Quantum Era

The Quantum threat:

Polynomial time Quantum algorithms for attacking current systems!

m = # bits
○ Shor’s algorithm for factoring 4m3 time and 2m qbits
○ ECC attack requires 360m3 time and 6m qbits

[Proos-Zalka, 2004]
Conclusion:

○ RSA: m = 2048
○ Discrete log m = 2048
○ Elliptic Curve Cryptography m = 256 or 384

are not resistant to quantum attacks once a quantum computer exists at scale!

Timeline for Elliptic Curve Cryptography

● (2005) Suite B set requirements for the use of Elliptic Curve Cryptography

● (2016) CNSA requirements increase the minimum bit-length for ECC from
256 to 384. Advises that adoption of ECC not required.

● (2017) NIST international competition to select post-quantum solutions:
5-year PQC Competition

● (2022) PQC algorithms standardized

Post-quantum cryptography
Submissions to the NIST PQC competition based on hard math problems:

■ Code-based cryptography (McEliece 1978)
■ Multivariate cryptographic systems (Matsumoto-Imai, 1988)
■ Lattice-based cryptography (Hoffstein-Pipher-Silverman, NTRU 1996)
■ Supersingular Isogeny Graphs (Charles-Goren-Lauter 2005)

○ Challenge! Need to see if these new systems are resistant to *both* classical and quantum
algorithms!

Supersingular Isogeny Graphs

New hard problem introduced at NIST Hash Function Competition in 2005:
[Charles-Goren-Lauter]

○ Finding paths between nodes in a Supersingular Isogeny Graph

Cryptographic Application: collision-resistant hash functions

Graphs: G = (V, E) = (vertices, edges)
○ k-regular, undirected graphs, with optimal expansion
○ No known efficient routing algorithm

Cryptographic hash functions
from expander graphs

Denis Charles, Microsoft Research
Eyal Goren, McGill University
Kristin Lauter, Microsoft Research

ECC 2006, Fields Institute
September 18, 2006

Practical applications

● Password verification
● Integrity check of received content
● Signed hashes
● Encryption protocols
● Message digest
● Microsoft source code (720 uses of MD5)

Example: graph of supersingular elliptic
curves modulo p (Pizer)

● Vertices: supersingular elliptic curves mod p
● Curves are defined over GF(p2)
● Labeled by j-invariants
● Vertices can also be thought of as maximal orders in

a quaternion algebra
● # vertices ~ p/12
● p ~ 2256

Pizer graph

● Edges: degree ℓ isogenies between them
● k = ℓ+1 – regular
● Graph is Ramanujan (Eichler, Shimura)
● Undirected if we assume p == 1 mod 12

Application: Cryptographic Hash functions
A hash function maps bit strings of some finite length to bit strings of some
fixed finite length

h : {0,1}n → {0,1}m

○ easy to compute

○ unkeyed (do not require a secret key to compute output)

○ Collision resistant

○ Uniformly distributed output

Collision-resistance

● A hash function h is collision resistant if it is computationally infeasible to
find two distinct inputs, x, y, which hash to the same output

h(x) = h(y)

● A hash function h is preimage resistant if, given any output of h, it is
computationally infeasible to find an input, x, which hashes to that output.

Application: cryptographic hash function

● k-regular graph G
● Each vertex in the graph has a label

Input: a bit string
● Bit string is divided into blocks
● Each block used to determine which edge to follow for the next step in the

graph
● No backtracking allowed!

Output: label of the final vertex of the walk

Science magazine
2008

Other graphs

● Vary the isogeny degree
● Lubotzky-Phillips-Sarnak graph

○ Cycles found: Eurocrypt 2008, Zemor-Tillich
○ Preimages found: SCN 2008, Petit-Quisquater-Lauter

■ LPS “path-finding” now used for quantum arithmetic (aka Ross-Selinger)

● Morgenstern graph, [Petit-Quisquater-Lauter 08]
● Genus 2 and Higher dimensional analogues

○ Superspecial abelian surfaces [Charles-Goren-L 07]

● Add level structure: [Arpin’22]
Adding Level Structure to Supersingular Elliptic Curve Isogeny
Graphs

“Isogenies in Cryptography” ongoing work:

● Alternate graphs/protocols:
○ CSIDH: Castryck-Lange-Martindale-Panny-Renes

● Dimension 2 analogues:
○ Decru, Flynn, Wesolowski, Jetchev, Florit, Smith …

● Signatures:
○ Vercauteren et al., Beullens,…

● Attacks:
○ Petit, Biasse, Bernstein, Stange, Morrison, …

● Graph structure:
○ Kohel, Arpin et al.

